Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters.
نویسندگان
چکیده
We provide a general treatment of optical two-dimensional fractional Fourier transforming systems. We not only allow the fractional Fourier transform orders to be specified independently for the two dimensions but also allow the input and output scale parameters and the residual spherical phase factors to be controlled. We further discuss systems that do not allow all these parameters to be controlled at the same time but are simpler and employ a fewer number of lenses. The variety of systems discussed and the design equations provided should be useful in practical applications for which an optical fractional Fourier transforming stage is to be employed.
منابع مشابه
Simulation of an Airy Beam with Optical Vortex under Fractional Fourier Transforms
First, this study obtained the fields of an Airy beam (AiB) with optical vortex (OV) for a Fourier transform (FT) system and a fractional Fourier transform (fractional FT) system; thereafter, their intensity and phase patterns were simulated numerically. The splitting on each line of the phase pattern indicates the position of an OV. The results show that the OV position will change when the po...
متن کاملFast and accurate algorithm for the computation of complex linear canonical transforms.
A fast and accurate algorithm is developed for the numerical computation of the family of complex linear canonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase systems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to represent paraxial optical systems that involve complex parameters. These include loss...
متن کاملOptical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions
Previous optical implementations of the two-dimensional fractional Fourier transform have assumed identical transform orders in both dimensions. We let the orders in the two orthogonal dimensions to be different and present general design formulae for optically implementing such transforms. This design formulae allows us to specify the two orders and the input, output scale parameters simultane...
متن کاملSparse representation of two- and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms
Sparse recovery aims to reconstruct signals that are sparse in a linear transform domain from a heavily underdetermined set of measurements. The success of sparse recovery relies critically on the knowledge of transform domains that give compressible representations of the signal of interest. Here we consider twoand three-dimensional images, and investigate various multi-dimensional transforms ...
متن کاملUncertainty principles for hypercomplex signals in the linear canonical transform domains
Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 37 11 شماره
صفحات -
تاریخ انتشار 1998